Graphs with rainbow connection number two
نویسندگان
چکیده
An edge-coloured graph G is rainbow connected if any two vertices are connected by a path whose edges have distinct colours. The rainbow connection number of a connected graph G, denoted rc(G), is the smallest number of colours that are needed in order to make G rainbow connected. In this paper we prove that rc(G) = 2 for every connected graph G of order n and size m, where (
منابع مشابه
Rainbow connection in oriented graphs
An edge-coloured graph G is said to be rainbow-connected if any two vertices are connected by a path whose edges have different colours. The rainbow connection number of a graph is the minimum number of colours needed to make the graph rainbow-connected. This graph parameter was introduced by G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang in 2008. Since, the topic drew much attention, and v...
متن کاملComputing Minimum Rainbow and Strong Rainbow Colorings of Block Graphs
A path in an edge-colored graph G is rainbow if no two edges of it are colored the same. The graph G is rainbow-connected if there is a rainbow path between every pair of vertices. If there is a rainbow shortest path between every pair of vertices, the graph G is strongly rainbow-connected. The minimum number of colors needed to make G rainbow-connected is known as the rainbow connection number...
متن کاملOn various (strong) rainbow connection numbers of graphs
An edge-coloured path is rainbow if all of its edges have distinct colours. For a connected graph G, the rainbow connection number rc(G) of G is the minimum number of colours in an edge-colouring of G such that, any two vertices are connected by a rainbow path. Similarly, the strong rainbow connection number src(G) ofG is the minimum number of colours in an edge-colouring of G such that, any tw...
متن کاملRainbow Connection in Graphs with Minimum Degree Three
An edge-coloured graph G is rainbow connected if any two vertices are connected by a path whose edges have distinct colours. This concept of rainbow connection in graphs was recently introduced by Chartrand et al.. The rainbow connection number of a connected graph G, denoted rc(G), is the smallest number of colours that are needed in order to make G rainbow connected. The computation of rc(G) ...
متن کاملProgress on Rainbow Connection
An edge-coloured graph G is called rainbow-connected if any two vertices are connected by a path whose edges have different colours. This concept of rainbow connection in graphs was recently introduced by Chartrand et al. in [4]. The rainbow connection number of a connected graph G, denoted rc(G), is the smallest number of colours that are needed in order to make G rainbow connected. An easy ob...
متن کاملVertex rainbow colorings of graphs
In a properly vertex-colored graphG, a path P is a rainbow path if no two vertices of P have the same color, except possibly the two end-vertices of P . If every two vertices of G are connected by a rainbow path, then G is vertex rainbow-connected. A proper vertex coloring of a connected graph G that results in a vertex rainbow-connected graph is a vertex rainbow coloring ofG. The minimum numbe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discussiones Mathematicae Graph Theory
دوره 31 شماره
صفحات -
تاریخ انتشار 2011